Abstract
In the present study the phase behavior of multilamellar dispersions of 1-O-(1′-alkenyl)-2-oleoyl-glycerophosphoethanolamine (ethanolamine plasmalogen), 1-O-alkyl-2-oleoyl-glycerophosphoethanolamine and 1-acyl-2-oleoyl-glycerophosphoethanolamine was compared using differential scanning calorimetry (DSC) and 31P-NMR. The three compounds differed only in the type of bonding (vinyl ether, alkyl ether or acyl ester) linking the aliphatic moiety to position 1 of sn-glycerol. The gel to liquid-crystalline phase transition temperature as determined by DSC was lowest for ethanolamine plasmalogen (26°C) and was similar for the alkylacyl and diacyl analogs (29.5° and 30°C, respectively). Enthalpies of the G → L phase transition were not significantly different for the three phospholipids tested. Ethanolamine plasmalogen undergoes the lamellar to hexagonal phase transition at 30°C, the analogous alkylacyl-glycerophosphoethanolamine(alkylacyl-GPE) and diacyl-GPE at 53°C and 69°C, respectively. Thus, an alkenyl ether bond in position 1 of sn-glycerol, the structural characteristic of plasmalogens, effectively stabilizes the hexagonal H II arrangement of ethanolamine glycerophospholipids, while it has relatively little effect on destabilization of the lamellar gel state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.