Abstract
In this work, we study how structures develop on 2D dense binary colloidal monolayers as a function of the relative concentration of small/large particles. Translational and orientational distribution functions have been used to monitor the continuous phase transition through a detailed characterization of the global and local order. We have observed how a gradual enhancement in the number of particles of different sizes leads to a continuous vitrification process and how homogeneous binary glasses form in equimolar mixtures. Also, we have performed a simple calculation that relates the structures found to the pair dipolar potential, allowing the forecast of local structures in other arbitrary binary mixtures. Finally, we have corroborated the goodness of the binary systems as a glass-forming model by comparing the established scenario with the structural features found in partially aggregated monolayers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.