Abstract
The phase behavior of symmetric ABC triple-hydrophilic triblock copolymers in concentrated aqueous solutions is investigated using a simulated annealing technique. Two typical cases, in which the hydrophilicity of the middle B-block is either stronger or weaker than that of the end A- and C-blocks, are studied. In these two cases, a variety of phase diagrams are constructed as a function of the volume fraction of the B-block and the copolymer concentration ([Formula: see text] for both non-frustrated and frustrated copolymers. Structures, such as two-color alternatingly packed cylinders or gyroid, and lamellae-in-lamellae etc. that do not occur in the melt system, are obtained in solutions. Rich phase transition sequences, especially re-entrant phase transitions involving complex continuous networks of alternating gyroid and alternating diamond are observed for a given copolymer with decreasing [Formula: see text] . The difference in hydrophilicity among different blocks can result in inhomogeneous distribution of solvent molecules in the morphology, and with the decrease of [Formula: see text] , the distribution of solvent molecules presents a non-monotonic variation. This results in a non-monotonic variation of the effective volume fraction of each domain with the decrease of [Formula: see text] , which induces the re-entrant phase transitions. The presence of a good solvent for all the blocks can cause changes in the effective segregation strengths between different blocks and also in chain conformations, hence can alter the bulk phases and results in the occurrence of new structures and phase transitions. Especially, structures having A-C interfaces or A-C mixed domains can be obtained even in the non-frustrated copolymer systems, and structures obtained in the frustrated systems may be similar to those obtained in the non-frustrated systems. The window of the alternating gyroid structures may occupy a large part of the phase diagram for non-frustrated copolymers with stronger B-hydrophilicity. This behavior can be used to tune the self-assembled structures of block copolymers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.