Abstract

The thermal behavior of poly(para-2,5-didecyl-p-phenylene) has been in- vestigated by differential scanning calorimetry and real time X-ray diffraction. Poly(para-2,5-didecyl-p-phenylene) is a semicrystalline material that crystallizes in a layered structure. The system exhibits two thermal transitions in the investigated temperature range. The first one, occurring at lower temperatures, provokes a reduction of the layered spacing accompanied by an appreciable disordering of the lateral side chains. Above the first transition the material is shearable, highly viscous, and birefrin- gent. Thus, we have associated this transition to the formation of a layered mesophase. The higher temperature transition exhibits a twofold endothermic DSC peak and is characterized by the disappearance of X-ray diffracted intensity. At temperatures above the second transition the system presents the characteristics of an isotropic melt. Conse- quently, we have associated this transition with the complete disordering of the poly- meric backbones. By following an appropriate thermal treatment it has been shown that the twofold shape of the endotherm characterizing the higher temperature transi- tion can be changed into a single endotherm. This effect has been interpreted as being due to the kinetics of main-chain ordering. This ordering seems to proceed by the initial growth of domains with a high level of order followed by the subsequent increase of these domains through the inclusion of less ordered material. q 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 49-54, 1998

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.