Abstract

We study the phase behavior of bowl-shaped particles using computer simulations. These particles were found experimentally to form a metastable wormlike fluid phase in which the bowl-shaped particles have a strong tendency to stack on top of each other [M. Marechal, Nano Lett. 10, 1907 (2010)]. In this work, we show that the transition from the low-density fluid to the wormlike phase has an interesting effect on the equation of state. The simulation results also show that the wormlike fluid phase transforms spontaneously into a columnar phase for bowls that are sufficiently deep. Furthermore, we describe the phase behavior as obtained from free energy calculations employing Monte Carlo simulations. The columnar phase is stable for bowl shapes ranging from infinitely thin bowls to surprisingly shallow bowls. Aside from a large region of stability for the columnar phase, the phase diagram features four novel crystal phases and a region where the stable fluid contains wormlike stacks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.