Abstract

Associative aqueous mixtures over a range of concentrations of double- (ds) or single- (ss) stranded DNA with dilute or semidilute solutions of two cationic derivatives of hydroxyethyl cellulose (cat-HEC and cat-HMHEC,1Cat-HEC and cat-HMHEC: N,N,N-trimethylammonium and N,N-dimethyl-N-dodecylammonium derivatives of hydroxyethyl cellulose, respectively.1 the latter carrying grafted hydrophobic groups), were studied. The phase behavior showed an interesting asymmetry: Phase separation occurred immediately when small (sub-stoichiometric) amounts of cationic polyelectrolyte were added to the DNA solution, but redissolution into a single cat-(HM)HEC/DNA/H2O phase occurred already with a modest charge excess of the cationic polyelectrolyte, at a charge ratio approximately independent of the overall polyelectrolyte concentration. Cat-HEC/dsDNA/H2O and cat-HEC/ssDNA/H2O systems presented a considerable difference in the extension of the phase separation region. The one-phase samples with excess cationic polyelectrolyte were studied by rheology. The presence of DNA strengthened the viscoelastic behavior of the solutions of the cationic polyelectrolytes, reflected in an increase in storage modulus and viscosity. Differences in phase behavior and rheology were observed, particularly between systems containing cat-HEC or cat-HMHEC, but also between dsDNA and ssDNA. Thus, these systems allow for the preparation of DNA formulations with widely variable rheology and water uptake.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.