Abstract

Microemulsions are thermodynamically stable, macroscopically isotropic mixtures of at least two immiscible components and a surfactant. Their general features, i.e. the complex phase behavior, the ultralow interfacial tensions, and the multifarious nanostructure, have been systematically elucidated in the last century. However, the efficient solubilization of long-chain n-alkanes and waxes, which plays a significant role in enhanced oil recovery, washing, and cosmetics, remains a challenge. Thus, in this work the influence of the n-alkane chain length k on the phase behavior of ternary (symmetric) microemulsions containing equal volumes of water and oil was studied. Using n-alkanes ranging from n-dodecane (C12H26) to n-dotriacontane (C32H66) and pure n-alkyl polyglycol ether (CiEj) surfactants, we found that the efficiency of the respective surfactant decreases linearly with increasing k, while the phase inversion temperature (PIT) shows a logarithmic dependence. The influence of a technical wax on the ph...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call