Abstract

We report a neutron-scattering study to characterize the ordering and local dynamics of spherical micelles formed by the triblock copolymer polyethylene oxide (PEO)--polypropylene oxide (PPO)--polyethylene oxide (Pluronic) in aqueous solution. The study focuses on two Pluronic species, F68 and F108, that have the same weight fraction of PEO but that differ in chain length by approximately a factor of 2. At sufficiently high concentration, both species undergo a sequence of phase changes with increasing temperature from dissolved chains to micelles with liquid-like order to a cubic crystal phase and finally back to a micelle liquid phase. A comparison of the phase diagrams constructed from small-angle neutron scattering indicates that crystallization is suppressed for shorter chain micelles due to fluctuation effects. The intermediate scattering function I(Q,t)I(Q,0) determined by neutron spin echo displays a line shape with two distinct relaxations. Comparisons between I(Q,t)I(Q,0) for fully hydrogenated F68 chains in D2O and for F68 with deuterated PEO blocks reveal that the slower relaxation corresponds to Rouse modes of the PPO segments in the concentrated micelle cores. The faster relaxation is identified with longitudinal diffusive modes in the PEO corona characteristic of a polymer brush.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.