Abstract
Digital holography has transformative potential in measuring stacked-chip microstructures due to its noninvasive, single-shot, full-field characteristics. However, uncertainties in reconstruction distance inevitably lead to resolving blur and reconstruction distortion. Herein, we propose a phase-based reconstruction optimization method that consists of a phase-evaluation function and a structured surface-characterization model. Our proposed method involves setting a reconstruction distance range, obtaining phase information using sliced numerical reconstruction, and optimizing the reconstruction distance by finding the extreme value of the function, which identifies the focal plane of the reconstructed image. The structure of the surface topography is then characterized using the characterization model. We perform simulations of the recording, reconstruction, and characterization to verify the effectiveness of the proposed method. To further demonstrate the approach, a simple holographic recording system is constructed to measure a standard resolution target, and the measurement results are compared with a commercial instrument. The simulation and experiment demonstrate, respectively, 31.16% and 34.41% improvement in step-height characterization accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.