Abstract

The growth in the number of low-cost narrow band radios such as Bluetooth low energy (BLE) enabled applications such as asset tracking, human behavior monitoring, and keyless entry. The accurate range estimation is a must in such applications. Phase-based ranging has recently gained momentum due to its high accuracy in multipath environment compared to traditional schemes such as ranging based on received signal strength. The phase-based ranging requires tone exchange on multiple frequencies on a uniformly sampled frequency grid. Such tone exchange may not be possible due to some missing tones, e.g., reserved advertisement channels. Furthermore, the IQ values at a given tone may be distorted by interference. In this paper, we proposed two phase-based ranging schemes which deal with the missing/interfered tones. We compare the performance and complexity of the proposed schemes using simulations, complexity analysis and measurement setups. In particular, we show that for small number of missing/interfered tones, the proposed system based on employing a trained neural network (NN) performs very close to a reference ranging system where there is no missing/interference tones. Interestingly, this high performance is at the cost of negligible additional computational complexity and up to 60.5 Kbytes of additional required memory compared to the reference system, making it an attractive solution for ranging using hardware-limited radios such as BLE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call