Abstract

Inter-areal synchronization by phase–phase correlations (PPCs) of cortical oscillations mediates many higher neurocognitive functions, which are often affected by prematurity, a globally prominent neurodevelopmental risk factor. Here, we used electroencephalography to examine brain-wide cortical PPC networks at term-equivalent age, comparing human infants after early prematurity to a cohort of healthy controls. We found that prematurity affected these networks in a sleep state-specific manner, and the differences between groups were also frequency-selective, involving brain-wide connections. The strength of synchronization in these networks was predictive of clinical outcomes in the preterm infants. These findings show that prematurity affects PPC networks in a clinically significant manner, suggesting early functional biomarkers of later neurodevelopmental compromise that may be used in clinical or translational studies after early neonatal adversity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call