Abstract
Inter-areal synchronization by phase–phase correlations (PPCs) of cortical oscillations mediates many higher neurocognitive functions, which are often affected by prematurity, a globally prominent neurodevelopmental risk factor. Here, we used electroencephalography to examine brain-wide cortical PPC networks at term-equivalent age, comparing human infants after early prematurity to a cohort of healthy controls. We found that prematurity affected these networks in a sleep state-specific manner, and the differences between groups were also frequency-selective, involving brain-wide connections. The strength of synchronization in these networks was predictive of clinical outcomes in the preterm infants. These findings show that prematurity affects PPC networks in a clinically significant manner, suggesting early functional biomarkers of later neurodevelopmental compromise that may be used in clinical or translational studies after early neonatal adversity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.