Abstract

An unsteady transient axisymmetric turbulent jet was studied experimentally. The initial flow perturbation consisted of a sudden and large decrease in the ejection velocity. The temporal evolution of the mean and fluctuating unsteady velocity field was measured by using X hot-wire probes. In the jet far field, adaptation of the externally imposed unsteadiness to the local jet time scale is confirmed quantitatively. The main features of the phase averaged velocity field are presented and comments are made about the instantaneous state of the turbulence energetics. Transient mean radial velocities are deduced and an important increase of the instantaneous rate of entraining external fluid into the jet is found. Finally, we show that the pressure effect due to radial impusle terms plays an important role in the propagation of the mean perturbation. The longitudinal adaptation of the perturbation time scale driven by the local jet time scale provides a turbulent flow that is intermediate to quasi-static flows and rapidly distorted flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call