Abstract
Adaptive Mesh Refinement (AMR) is an approach to solving PDEs that reduces the computational and memory requirements at the expense of increased communication. Although adopting asynchronous execution can overcome communication issues, manually restructuring an AMR application to realize asynchrony is extremely complicated and hinders readability and long-term maintainability. To balance performance against productivity, we design a user-friendly API and adopt phase asynchronous execution model where all subgrids at an AMR level can be computed asynchronously. We apply the phase asynchrony to transform a real-world AMR application, CASTRO, which solves multicomponent compressible hydrodynamic equations for astrophysical flows. We evaluate the performance and programming effort required to use our carefully designed API and execution model for transitioning large legacy codes from synchronous to asynchronous execution up to 278,528 Intel-KNL cores. CASTRO is about 100K lines of code but less than 0.2% code changes are required to achieve significant performance improvement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.