Abstract

In this work, recycled concrete fine (RCF), one of the major products generated from waste concrete recycling process, was carbonated in water. The carbonation mechanism of RCF is investigated, aiming to bring forward the basic understanding of carbonation mechanism and develop value-added products. It was found that the CO2 dissolution and calcite precipitation limited the carbonation process for the initial stage. Afterwards, the kinetics was dominated by the dissolution of RCF. Portlandite was firstly consumed and the decalcification of C-S-H involved three steps associated with pH development of the aqueous environment. The main carbonation products were calcite, amorphous calcium carbonate (CC), alumina-silica gel, silica gel and alumina gel. The formed CC was turned from a poorly-crystalline layer into aggregated calcite grains. Meanwhile, a silica-rich layer was still located at the outermost surface of carbonated RCF. The carbonated RCF had a significantly high pozzolanic reactivity, being reused as supplementary cementitious materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.