Abstract

In the literature one finds several conflicting accounts of the phase difference of stimulated and spontaneous emission, as well as absorption, with respect to an existing (triggering) electromagnetic field. One of these approaches proposes that stimulated emission and absorption occur in phase and out of phase with their driving field, respectively, whereas spontaneous emission occurs under an arbitrary phase difference with respect to an existing field. It has served as a basis for explaining quantum-mechanically the laser linewidth, its narrowing by a factor of 2 around the laser threshold, as well as its broadening due to amplitude–phase coupling, resulting in Henry’s α-factor. Assuming the validity of Maxwell’s equations, all three processes would, thus, violate the law of energy conservation. In semi-classical approaches, we investigate stimulated emission in a Fabry–Perot resonator, analyze the Lorentz oscillator model, apply the Kramers–Kronig relations to the complex susceptibility, understand the summation of quantized electric fields, and quantitatively interpret emission and absorption in the amplitude–phase diagram. In all cases, we derive that the phase of stimulated emission is 90° in lead of the driving field, and the phase of absorption lags 90° behind the transmitted field. Also spontaneous emission must obey energy conservation, hence it occurs with 90° phase in lead of an existing field. These semi-classical findings agree with recent experimental investigations regarding the interaction of attosecond pulses with an atom, thereby questioning the physical explanation of the laser linewidth and its narrowing or broadening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call