Abstract

The phase angle-based principal component (PC) technique for islanding detection of distributed generations (DGs) is proposed. The phase angle between the positive-sequence components of voltage and current is derived at the DG terminal and used as an input feature vector for the PC technique to identify the islanding situation (IS). The change in phase angle is prominent for both ISs and non-ISs (NISs). By exploiting this change in phase angle, PCs are computed to discriminate between ISs and NISs. The proposed technique is evaluated using data simulated with a real-time digital simulator for IEEE 13-bus microgrids. Critical issues such as a perfect power match IS, different scenarios of microgrids having a synchronous generator, doubly fed induction wind generator, photovoltaic with various control strategies and battery energy storage systems are addressed during performance evaluation of the proposed technique. It is found that the technique identifies the IS under low active and reactive power mismatches and hence overcomes the non-detection zone problem. All NISs such as the fault type, DG tripping and feeder disconnection in the presence of multiple DGs are considered. It is noteworthy to mention that the proposed technique discriminates ISs and NISs within a cycle from the inception point.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call