Abstract

We theoretically analyze a method for matching group velocities of fundamental and second harmonic femtosecond pulses during phase matched frequncy doubling by predispersing the fundamental pulse with a prism. The method permits improved conversion efficiency by allowing crystal lengths of several millimeters without sacrificing second harmonic pulse duration. Second harmonic pulse energy and duration are analyzed for beta-BaB(2)O(4), and limiting experimental factors are discussed. The results show that the method is most advantageous for incident pulses between 0.1- and 1.0-ps duration and microjoule and higher energies and that second harmonic pulse duration and conversion efficiency are not highly sensitive to optical misalignments of the order of 1 degrees .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.