Abstract

In this paper, we propose a novel photonic crystal fibre (PCF) with high phase birefringence and very low group birefringence. It is composed of a solid silica core and a cladding with helix-pattern air holes. Using a full-vector finite-element method, we study the phase and group modal birefringence of such PCF at various air-hole sizes, pitches and wavelengths. Owing to this innovative structure of air holes, a high phase to group modal birefringence rate is obtained. Its phase modal birefringence is as large as 10 −4 magnitude; however, the group modal birefringence of this PCF is at 10 −7–10 −6. The phase birefringence is 2 orders of magnitude larger than group birefringence over a broad wavelength span, which means that the light with different polarization and effective index has almost a same group velocity. As a result, the group modal birefringence that closely relates to the polarization modal dispersion is negligible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call