Abstract

Based on phase controlled electromagnetically induced transparency, we propose a scheme for coherent control and storage of a microwave pulse in a linear array of artificial atoms. In particular, we consider the effects of the amplitude and phase of the fields driving the superconducting artificial atoms attached to a one-dimensional transmission line on the storage of a microwave pulse. We show that controlling the relative-phase of the microwave fields coupling the artificial atoms in a three-level Δ-configuration can yield tunable transparency window, which allows the propagation of a microwave pulse. The amplitude-control of the lower-levels coupling field adds a gain signature to the transparency window. Our results show that the absorption of the probe microwave pulse is suppressed and it gets amplified while propagating through an array of artificial atoms. The group velocity of the probe pulse is considerably reduced as a result atoms in a linear array act as coherent microwave memories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.