Abstract
An in-situ composite of copper and tungsten carbide powder was prepared by mechanical alloying of elemental powder. The sample has been milled in a high-energy ball mill for 20 h at different milling speed i.e. 100, 200, 300 and 400 rpm in an argon atmosphere. Investigations in terms of microstructural features and phase constitution of in-situ composites powder were performed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). At higher milling speed, W2C is found to be precipitated with a small amount of WC was formed. Crystallite size of copper is reducing while internal strain is increasing with increasing milling speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.