Abstract
A phase-shifting algorithm, called a (4,4) algorithm, which takes four phase-shifting interferograms before a specimen is deformed and four interferograms after a specimen is deformed, is presented first. This method is most widely used for phase extraction. Its drawback limited it to be used in dynamic measurements. Also shown is an algorithm called a (4,1) algorithm that takes four phase-shifting interferograms before a specimen is deformed and one interferogram after a specimen is deformed. Because a high-speed camera can be used to record the dynamic interferogram of the specimen, this algorithm has the potential to retain the phase-shifting capability for ESPI in dynamic measurements. The quality of the phase map obtained using (4,1) algorithm is quite lower compared to using (4,4) algorithm. In order to obtain high-quality phase map in dynamic measurements, a direct-correlation algorithm was integrated with the (4,1) algorithm to form DC-(4,1) algorithm which is shown to improve significantly the quality of the phase maps. The theoretical and experimental aspects of this newly developed technique, which can extend ESPI to areas such as high-speed dynamic measurements, are examined in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.