Abstract

Digital holographic microscopy (DHM), a quantitative phase-imaging technology, has been widely used in various applications. Phase-aberration compensation in off-axis DHM is vital to reconstruct topographical images with high precision, especially for microstructures with a small background or a dense phase distribution. We propose a numerical method based on deep learning combined with DHM. First, a convolutional neural network (CNN) recognizes and segments the sample and the background area of the hologram. Zernike polynomial fitting is then executed on the extracted background area. Finally, the whole process of phase-aberration compensation is automatically performed. To obtain a robust and accurate deep-learning model for hologram segmentation, we collected many holograms corresponding to several samples that had different morphological characteristics. The experimental results confirm that the trained CNN can accurately segment the sample from the background area of the hologram, and that this method is applicable and effective in off-axis DHM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.