Abstract

Aims: Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are employed extensively in the management of type 2 diabetes and obesity. However, there is a paucity of real-world data on their safety and tolerability for metabolic and nutritional adverse events in large sample populations. This study aimed to analyse the metabolic and nutritional safety signatures of different GLP-1 RAs by exploring the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS). Methods: AEs data were extracted from the FDA Adverse Event Reporting System database for each GLP-1 RA from the time of its launch until the second quarter of 2023. The reported odds ratio (ROR), proportional reporting ratio (PRR), Empirical Bayesian Geometric Mean and Bayesian Confidence Propagation Neural Network were employed to identify AE signals. Results: A system organ class of metabolism and nutrition disorders was employed to filter AE reports, resulting in the identification of 10,450 reports for exenatide, 2,860 reports for liraglutide, 240 reports for albiglutide, 4,847 reports for dulaglutide, 2,905 reports for semaglutide, 1,089 reports for tirzepatide, and 13 reports for lixisenatide. Semaglutide (ROR, 3.34; 95%CI, 3.22), liraglutide (ROR, 2.78; 95%CI, 2.69), and exenatide (ROR, 2.15; 95%CI, 2.11) were associated with metabolism and nutrition disorders. The number of AE signals detected were as follows: albiglutide (n = 1), lixisenatide (n = 2), tirzepatide (n = 11), exenatide (n = 12), liraglutide (n = 16), semaglutide (n = 20), dulaglutide (n = 22). Dehydration was the most frequent AE contributing to serious outcomes for liraglutide (n = 318, 23.93%), dulaglutide (n = 434, 20.90%), semaglutide (n = 370, 25.10%) and tirzepatide (n = 70, 32.86%). The time to onset (TTO) of AE was statistically different between exenatide and the other GLP-1 RAs (p < 0.001), and the Weibull parameters for dehydration for liraglutide, dulaglutide, and semaglutide analyses all showed an early failure-type profile. Conclusion: Our study suggests that exenatide, liraglutide, and semaglutide are more susceptible to metabolic and nutritional AEs than other GLP-1 RAs. Liraglutide, dulaglutide, semaglutide, and tirzepaptide's potential to induce dehydration, necessitates special attention. Despite certain deficiencies, GLP-1 RAs have considerable potential for the treatment of eating disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.