Abstract

IntroductionChondroitin sulfate (CS) and glucosamine sulfate (GS) are symptomatic slow-acting drugs for osteoarthritis (OA) widely used in clinic. Despite their widespread use, knowledge of the specific molecular mechanisms of their action is limited. The aim of this work is to explore the utility of a pharmacoproteomic approach for the identification of specific molecules involved in the pharmacological effect of GS and CS.MethodsChondrocytes obtained from three healthy donors were treated with GS 10 mM and/or CS 200 μg/mL, and then stimulated with interleukin-1β (IL-1β) 10 ng/mL. Whole cell proteins were isolated 24 hours later and resolved by two-dimensional electrophoresis. The gels were stained with SYPRORuby. Modulated proteins were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF/TOF) mass spectrometry. Real-time PCR and Western blot analyses were performed to validate our results.ResultsA total of 31 different proteins were altered by GS or/and CS treatment when compared to control. Regarding their predicted biological function, 35% of the proteins modulated by GS are involved in signal transduction pathways, 15% in redox and stress response, and 25% in protein synthesis and folding processes. Interestingly, CS affects mainly energy production (31%) and metabolic pathways (13%), decreasing the expression levels of ten proteins. The chaperone GRP78 was found to be remarkably increased by GS alone and in combination with CS, a fact that unveils a putative mechanism for the reported anti-inflammatory effect of GS in OA. On the other hand, the antioxidant enzyme superoxide dismutase 2 (SOD2) was significantly decreased by both drugs and synergistically by their combination, thus suggesting a drug-induced decrease of the oxidative stress caused by IL-1β in chondrocytes.ConclusionsCS and GS differentially modulate the proteomic profile of human chondrocytes. This pharmacoproteomic approach unravels the complex intracellular mechanisms that are modulated by these drugs on IL1β-stimulated human articular chondrocytes.

Highlights

  • Chondroitin sulfate (CS) and glucosamine sulfate (GS) are symptomatic slow-acting drugs for osteoarthritis (OA) widely used in clinic

  • CS and GS differentially modulate the proteomic profile of human chondrocytes

  • This pharmacoproteomic approach unravels the complex intracellular mechanisms that are modulated by these drugs on IL1β-stimulated human articular chondrocytes

Read more

Summary

Introduction

Chondroitin sulfate (CS) and glucosamine sulfate (GS) are symptomatic slow-acting drugs for osteoarthritis (OA) widely used in clinic. Despite their widespread use, knowledge of the specific molecular mechanisms of their action is limited. The failure of conventional treatments (analgesics or non-steroidal anti-inflammatory drugs) to satisfactorily control OA progression, combined with their frequent adverse side effects, may explain the increasing use of such SYSADOA (SYmptomatic Slow-Acting Drugs for Osteoarthritis) therapies as glucosamine sulfate (GS) and chondroitin sulfate (CS). Different clinical trials have proved that GS [2,3,4] and CS [5,6] are effective in relieving the symptoms of OA [7], probably due to their antiinflammatory properties. One possible explanation for this discrepancy may be the relative participation of inflammatory cytokines in different subpopulations; and it is hypothesized that the effects of GS and CS are better realized in patients with more severe OA, which have greater involvement of interleukin-1beta (IL-1β) [10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.