Abstract

The rational combination of techniques from the fields of nanotechnology, single molecule detection, and lead discovery could provide elegant solutions to enhance the throughput of drug screening. We have synthesized nanoarrays of small pharmacophores on DNA origami substrates that are displayed either as individual ligands or as fragment pairs and thereby reduced the feature size by several orders of magnitude, as compared with standard microarray techniques. Atomic force microscopy-based single-molecule detection allowed us to distinguish potent protein-ligand interactions from weak binders. Several independent binding events, that is, strong, weak, symmetric bidentate, and asymmetric bidentate binding are directly visualized and evaluated. We apply this method to the discovery of bidentate trypsin binders based on benzamidine paired with aromatic fragments. Pairing of benzamidine with the dye TAMRA results in tenfold enhancement of the trypsin binding yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.