Abstract

Fructose catabolism starts with phosphorylation of d-fructose to fructose 1-phosphate, which is performed by ketohexokinase (KHK). Fructose metabolism may be the key to understand the long-term consumption of fructose in human's obesity, diabetes and metabolic states in western populations. The inhibition of KHK has medicinally potential roles in fructose metabolism and the metabolic syndrome. To identify the essential chemical features for KHK inhibition, a three-dimensional (3D) chemical-feature-based QSAR pharmacophore model was developed for the first time by using Discovery Studio v2.5 (DS). The best pharmacophore hypothesis (Hypo1) consisting two hydrogen bond donor, two hydrophobic features and has exhibited high correlation co-efficient (0.97), cost difference (76.1) and low RMS (0.66) value. The robustness and predictability of Hypo1 was validated by fisher's randomization method, test set, and the decoy set. Subsequently, chemical databases like NCI, Chembridge and Maybridge were screened for validated Hypo1. The screened compounds were further analyzed by applying drug-like filters such as Lipinski's rule of five, ADME properties, and molecular docking studies. Further, the highest occupied molecular orbital, lowest unoccupied molecular orbital and energy gap values were calculated for the hits compounds using density functional theory. Finally, 3 hit compounds were selected based on their good molecular interactions with key amino acids in the KHK active site, GOLD fitness score, and lowest energy gaps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call