Abstract

A series of novel chalcone and thiol-Michael addition analogues was synthesized and tested against Mycobacterium tuberculosis and other clinically significant bacterial pathogens. Previously reported chalcone-like antibacterials (1a–c and 2) were used as a training set to generate a pharmacophore model. The chalcone derivative hit compound 3 was subsequently identified through a pharmacophore-based virtual screen of the Specs library of >200 000 compounds. Among the newly synthesized chalcones and thiol-Michael addition analogues, chalcones 6r and 6s were active (minimum inhibitory concentrations (MICs) = 1.56–6.25 μg/mL) against Gram-positive pathogens Bacillus anthracis and Staphylococcus aureus [methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA)]. The chalcone thiol-Michael addition derivatives 7j–m showed good to excellent antibacterial activities (MICs = 0.78–6.25 μg/mL) against Enterococcus faecalis, B. anthracis, and S. aureus. Interestingly, the amine-Michael addition analogue 12a showed promising anti-MRSA activity (MIC = 1.56 μg/mL) with a selectivity index of 14 toward mammalian Vero cells. In addition, evaluation of selected compounds against biofilm and planktonic S. aureus (MSSA and MRSA) revealed that 12a exhibited bactericidal activities in these assays, which was overall superior to vancomycin. These properties may result from the compounds dissipating the proton motive force of bacterial membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.