Abstract

Pharmacophore modeling and 3D-Quantitative Structure Activity Relationship (3D-QSAR) studies have been performed on a dataset of thirty-two quinazoline and aminopyridine derivatives to get an insight into the important structural features required for binding to inducible nitric oxide synthase (iNOS). A four-point CPH (Common Pharmacophore Hypothesis), AHPR.29, with a hydrogen bond acceptor, hydrophobic group, positively charged ionizable group and an aromatic ring, has been obtained as the best pharmacophore model. Satisfactory statistical parameters of correlation ([Formula: see text]) and cross-validated ([Formula: see text]) correlation coefficients, 0.9288 and 0.6353, respectively, show high robustness and good predictive ability of our selected model. The contour maps have been developed from this model and the analysis has provided an interpretable explanation of the effect that various features and substituents have on the potency and selectivity of inhibitors towards iNOS. Docking studies have also been performed in order to analyze the interactions between the enzyme and the inhibitors. Our proposed model can thus be further used for screening a large database of compounds and design new iNOS inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call