Abstract
The human farnesyl pyrophosphate synthase (hFPPS), a key regulatory enzyme in the mevalonate pathway, catalyzes the biosynthesis of the C-15 isoprenoid farnesyl pyrophosphate (FPP). FPP plays a crucial role in the post-translational prenylation of small GTPases that perform a plethora of cellular functions. Although hFPPS is a well-established therapeutic target for lytic bone diseases, the currently available bisphosphonate drugs exhibit poor cellular uptake and distribution into nonskeletal tissues. Recent drug discovery efforts have focused primarily on allosteric inhibition of hFPPS and the discovery of non-bisphosphonate drugs for potentially treating nonskeletal diseases. Hit-to-lead optimization of a new series of thienopyrimidine-based monosphosphonates (ThP-MPs) led to the identification of analogs with nanomolar potency in inhibiting hFPPS. Their interactions with the allosteric pocket of the enzyme were characterized by crystallography, and the results provide further insight into the pharmacophore requirements for allosteric inhibition.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.