Abstract

Histone deacetylases (HDACs) play important roles in various biological processes, but are also notorious for their over-expression in numerous cancers and neurological disorders. Therefore, the development of isoform selective HDAC inhibitors is crucial in order to prevent any side effects of pan inhibition. This work focuses on identifying novel inhibitors for the selective inhibition of HDAC8, an isoform implicated in fatal diseases like T-cell lymphoma, colon cancer and childhood neuroblastoma. Virtual screening of the ‘In-trials’ subset of ZINC database has been carried out with the help of two pharmacophore models signifying potent and selective HDAC8 inhibition. A detailed molecular docking strategy, followed by molecular dynamics simulations and post-scoring with MM-GBSA calculations, has led to the identification of six promising molecules that have excellent binding with the HDAC8 active site. In order to establish the selectivity profile of these molecules, their binding to off-target HDAC isoforms has also been evaluated. Substitution analyses of the proposed inhibitors suggest that aromatic substituents that access the adjacent hydrophobic pocket of the HDAC8 active site have the potential to further enhance the HDAC8 selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call