Abstract
AbstractThe main aim of this study is to obtain novel molecules that are more selective on cancer cells compared to healthy cells. For this purpose, four hit molecules are identified using 11 new pharmacophore hypotheses followed by scanning the in‐house database. Then, based on those hit molecules, the synthesis and analysis of four different series (three quinazolines and one quinoline series) are carried out, and their anticancer activity is investigated. Finally, by using molecular docking and dynamics simulation methods, binding mode and structure–activity relationship are examined. Among the quinazolin‐4(3H)‐one derivatives, those containing halogen atom are found to be potentially effective, while the best epidermal growth factor receptor (EGFR) inhibition and apoptosis induction are displayed by compounds containing 4‐amino‐1,2,4‐triazole moiety. Notably, four compounds (4h, 8d, 8l, and 8m) show EGFR inhibition activity at 5.298 ± 0.164, 5.46 ± 0.221, 2.670 ± 0.124, and 2.191 ± 0.908 × 10−9 m, their inhibitory activity is similar to or stronger than gefitinib (IC50: 4.169 ± 0.156 × 10−9 m). In addition, EGFR inhibitor concentration of 4g, 8e, and 8o is determined as 27588 ± 6.945, 52.41 ± 2.312, and 33657 ± 8.512 × 10−9 m. These findings indicate that generated pharmacophore hypotheses successfully determine new EGFR inhibitors. In conclusion, four novel compounds, more active than gefitinib with fewer side effects, are reached, and the structure–activity relationships are clarified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.