Abstract

The prediction of harmful effects can guide research on the health hazards of environmental pollutants. The development of a computer-aided drug design in pharmacological technology and omics database remarkably facilitates the prediction of the possible harmful effects of hazardous substances. In this study, the pharmacophore target database based on molecular structure served as a bridge between pollutants and genes and combined with the omics database and molecular pathway enrichment technology to predict the potential prostatic cancer-promoting effect of dibutyl phthalate. Cell experiments and gene expression were carried out to verify the previous prediction, and the characteristics of harmful effects were further explored. Low concentrations of dibutyl phthalate may have androgen-independent prostate cancer-promoting effects, which may put patients receiving androgen deprivation therapy in danger. This study suggests the potential negative effects of phthalates on prostate cancer and a method for predicting harmful effects on the basis of pharmacology technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call