Abstract

VEGFR-2, a transmembrane tyrosine kinase receptor is responsible for angiogenesis and has been an attractive target in treating cancers. The inhibition mechanism of structurally diverse urea derivatives, reported as VEGFR-2 inhibitors, was explored by pharmacophore modeling, QSAR, and molecular dynamics based free energy analysis.The pharmacophore hypothesis AADRR, resulted in a highly significant atom based 3D-QSAR model (r2 = 0.94 and q2 = 0.84). Binding free energy analysis of the docked complexes of highly active and inactive compounds, after 7 ns MD simulation, revealed the importance of van der Waals interaction in VEGFR-2 inhibition. The decomposition of binding free energy on a per residue basis disclosed that the residues in hinge region and hydrophobic pocket play a role in discriminating the active and inactive inhibitors. Thus, the present study proposes a pharmacophore hypothesis representing the identified interactions pattern and its further application as a template in screening databases to identify novel VEGFR-2 inhibitor scaffolds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.