Abstract

Cancer is a disease involving genetic factors in its pathogenesis. The increase of cell survival as a result of genetic changes, which prevent apoptosis such as Bcl2 (B-cell lymphoma-2) activation, will cause the tumor to grow. The overexpression of Bcl2 in small cell lung cancer should be inhibited. This study aims to screen natural products that can inhibit Bcl2 overexpression in lung cancer using pharmacophore- and molecular docking-based virtual screening to ZINC Natural Product database. The validation of pharmacophore-based virtual screening to the three features of the pharmacophore model (2 hydrophobic interactions and 1 hydrogen bond donor) showed that the AUC, EF, Se, Sp, ACC, and GH values were 0.57, 3.8, 0.101, 0.957, 0.936, and 0.149, respectively. On the other hand, the validation of molecular docking-based virtual screening showed that the RMSD values of Vina Wizard and AutoDock Wizard were 1.3Å and 1.9Å, respectively. The pharmacophore model virtual screening first obtained 6,615 compounds, and then the molecular docking-based virtual screening finally gained 255 compounds whose values of ΔG and Ki were lower than those of the native ligand. It was concluded that the virtual screening could yield as many as 255 potential anti-lung cancer drug candidates.
 Keywords: B-cell lymphoma 2 inhibitors, molecular docking, pharmacophore modeling, virtual screening

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call