Abstract

Approximately 25% of breast cancer patients experience treatment delays or discontinuation due to paclitaxel-induced peripheral neuropathy (PN). Currently, there are no predictive biomarkers of PN. Pharmacometabolomics is an informative tool for biomarker discovery of drug toxicity. We conducted a secondary whole blood pharmacometabolomics analysis to assess the association between pretreatment metabolome, early treatment-induced metabolic changes, and the development of PN. Whole blood samples were collected pre-treatment (BL), just before the end of the first paclitaxel infusion (EOI), and 24 h after the first infusion (24H) from sixty patients with breast cancer receiving (80mg/m2) weekly treatment. Neuropathy was assessed at BL and prior to each infusion using the sensory subscale (CIPN8) of the EORTC CIPN20 questionnaire. Blood metabolites were quantified from 1-D-1H-nuclear magnetic resonance spectra using Chenomx® software. Metabolite concentrations were normalized in preparation for Pearson correlation and one-way repeated measures ANOVA with multiple comparisons corrected by false discovery rate (FDR). Pretreatment histidine, phenylalanine, and threonine concentrations were inversely associated with maximum change in CIPN8 (ΔCIPN8) (p < 0.02; FDR ≤ 25%). Paclitaxel caused a significant change in concentrations of 2-hydroxybutyrate, 3-hydroxybutyrate, pyruvate, o-acetylcarnitine, and several amino acids from BL to EOI and/or 24H (p < 0.05; FDR ≤ 25%), although these changes were not associated with ΔCIPN8. Whole blood metabolomics is a feasible approach to identify potential biomarker candidates of paclitaxel-induced PN. The findings suggest that pretreatment concentrations of histidine, phenylalanine, and threonine may be predictive of the severity of future PN and paclitaxel-induced metabolic changes may be related to disruption of energy homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.