Abstract

Transient outward potassium currents were first described nearly 60years ago, since then major strides have been made in understanding their molecular basis and physiological roles. From the large family of voltage-gated potassium channels members of 3 subfamilies can produce such fast-inactivating A-type potassium currents. Each subfamily gives rise to currents with distinct biophysical properties and pharmacological profiles and a simple workflow is provided to aid the identification of channels mediating A-type currents in native cells. Their unique properties and regulation enable A-type K+ channels to perform varied roles in excitable cells including repolarisation of the cardiac action potential, controlling spike and synaptic timing, regulating dendritic integration and long-term potentiation as well as being a locus of neural plasticity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call