Abstract

In the present study, the effect of bradykinin on basal and precontracted mouse-isolated trachea was investigated. In basal conditions mouse-isolated tracheal rings do not respond to bradykinin. However, when the tracheal rings were precontracted with carbachol (10(-7) M) a relaxation with bradykinin (3 x 10(-9)-3 x 10(-7)) was found. The maximal response amounted 69.7+/-4.1% (n=15) with a pD2 value of 7.2+/-0.21. The selective bradykinin B2 receptor antagonist HOE 140 (10(-10)-10(-8) M) antagonized the bradykinin-induced relaxation, while the bradykinin B1 receptor antagonist des-Arg9-Leu8-bradykinin (10(-6) M) had no influence. The selective bradykinin B1 receptor agonist des-Arg9-bradykinin (10(-6) M) caused a small relaxation (8.4+/-2.5%, n=6), which could be antagonized completely by the selective bradykinin B1 receptor antagonist des-Arg9-Leu8-bradykinin (10(-6) M) while addition of the selective bradykinin B2 receptor antagonist HOE 140 (10(-8) M) was without effect. In the presence of indomethacin (10(-6) M) the relaxation of bradykinin was completely abolished. Pretreatment of the tracheal rings with capsaicin, or the presence of the selective NK1 receptor antagonist RP 67851 (10(-6) M) or the presence of the nitric oxide synthase inhibitor L-NAME (3 x 10(-4) M) had no effect on the bradykinin-induced relaxation. In conclusion, these results demonstrate that the mouse-isolated tracheal is a preparation in which bradykinin exerts a relaxant response via stimulation of bradykinin B2 receptors. This response is probably mediated by prostaglandins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call