Abstract

There is correlative evidence that impaired cerebral blood flow (CBF) regulation, in addition to promoting cognitive impairment, is also associated with alterations in gait and development of falls in elderly people. CBF is adjusted to neuronal activity via neurovascular coupling (NVC) and this mechanism becomes progressively impaired with age. To establish a direct cause-and-effect relationship between impaired NVC and gait abnormalities, we induced neurovascular uncoupling pharmacologically in young C57BL/6 mice by inhibiting the synthesis of vasodilator mediators involved in NVC. Treatment of mice with the epoxygenase inhibitor MSPPOH, the NO synthase inhibitor L-NAME, and the COX inhibitor indomethacin significantly decreased NVC mimicking the aging phenotype. Pharmacologically induced neurovascular uncoupling significantly decreased the dynamic gait parameter duty cycle, altered footfall patterns, and significantly increased phase dispersion, indicating impaired interlimb coordination. Impaired NVC also tended to increase gait variability. Thus, selective experimental disruption of NVC causes subclinical gait abnormalities, supporting the importance of CBF in both cognitive function and gait regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call