Abstract

Galectin-1 protein (GAL-1) has important anti-inflammatory properties, but related pharmacologic approaches to effectively treat or prevent renal ischaemia and reperfusion injury are highly limited. Here, we investigated the effect of GAL-1 in a renal ischaemia-reperfusion injury rat model and an in vitro hypoxia-reoxygenation model with a proximal renal tubular epithelial cell line. In vivo, pretreatment with GAL-1 attenuated the renal parameters changed by ischaemia-reperfusion/hypoxia-reoxygenation, with recovery of renal function, protecting against influx of leukocytes, cell death and oxidative stress. Ischaemia-reperfusion/hypoxia-reoxygenation was also associated with increased renal endogenous expression of GAL-1 and intercellular adhesion molecule 1 (ICAM-1) plus augmented levels of proinflammatory cytokines IL-1β, TNF-α and MCP-1 and decreased anti-inflammatory IL-10 in urine, all of which were abrogated by GAL-1 treatment. In vitro studies demonstrated renal tubular epithelial cells as an important source of GAL-1 during hypoxia-reoxygenation and confirmed the protective effects of exogenous GAL-1 through downregulation of proinflammatory cytokine release by proximal renal tubular epithelial cells. Collectively, our findings confirm the important anti-inflammatory role of GAL-1 in kidney ischaemia and reperfusion injury and indicate its promising use as a therapeutic approach.

Highlights

  • Ischaemia-reperfusion (IR) occurs during procedures involved in the transplantation of organs and the damage caused by hypoxic IR in tubular cells represents the first event of acute renal failure[1,2]

  • DEXA and GAL-1-treated IR groups presented mild to moderate tissue injury of the juxtamedullary region

  • IR-induced renal injury results from a complex process involving the release of reactive oxygen species and proinflammatory mediators, the upregulation of adhesion molecules and leukocyte recruitment that culminates with rapid kidney dysfunction and high mortality rates[2,4]

Read more

Summary

Introduction

Ischaemia-reperfusion (IR) occurs during procedures involved in the transplantation of organs and the damage caused by hypoxic IR in tubular cells represents the first event of acute renal failure[1,2]. GAL-1 is a 14.5 kDa protein that modulates cellular signalling, proliferation and survival and plays critical roles in the control of acute and chronic inflammation and neovascularization[6,7,8]. This lectin alters the secretion of cytokines, reducing levels of IL-2, IL-12, interferon gamma (IFN-γ) and tumour necrosis factor (TNF-α) and increasing IL-5 and IL-106,7,9,10. Given the acute renal failure is associated with increased risk of mortality and that the immune regulatory functions of GAL-1 in renal injury processes are poorly understood, we aimed to determine the mechanism of action of this lectin in an in vivo and an in vitro model of renal IR injury

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call