Abstract

The scaffold molecule Axin2 is constitutively activated in colorectal cancer (CRC) and functions as a potent promoter of CRC behaviour. Pharmacological targeting of Axin2 may therefore exert a therapeutic effect in patients with CRC. Here, we discovered a potent small-molecule inhibitor of Axin2, based on the mechanism by which Axin2 is regulated post-translationally, and investigated its antitumour effects. Compound discovery and its inhibitory action on Axin2 protein were revealed by microscale thermophoresis, in vitro kinase assay, quantitative kinetic assay, immunoblotting/immunoprecipitation, RT-qPCR and cycloheximide pulse-chase assay. Compound antitumour effects and the underlying mechanisms were evaluated in multiple cell-based assays and mouse models. We discovered that glycogen synthase kinase 3β (GSK3β) phosphorylates Axin2 at two consensus motifs and coupled Axin2 phosphorylation to its ubiquitination (mediated by the E3 ligase β-Trcp2) and proteasomal degradation. The binding of Axin2 to GSK3β in CRC cells is faint, which enables most of the Axin2 protein to maintain an unphosphorylated status and thereby permits the cells to preserve high levels of Axin2. Importantly, we identified a small-molecule compound CW85319 that enhances Axin2's interaction with GSK3β via forming a high affinity for Axin2. Treatment of CRC cells with CW85319 enhanced Axin2 binding with GSK3β, thereby promoting Axin2 phosphorylation, subsequent ubiquitination, and degradation. Furthermore, we demonstrated that CW85319 efficiently suppressed Axin2-driven CRC growth and metastasis, without eliciting side toxicity. These findings suggest that pharmacological targeting of Axin2 by CW85319 may provide therapeutic benefits against certain human cancers, especially CRC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call