Abstract

Surprisingly little is known about the modulation of core endophenotypes of psychiatric disease by discrete noradrenergic (NE) circuits. Prepulse inhibition (PPI), the diminution of startle responses when weak prestimuli precede the startling event, is a widely validated translational paradigm for information-processing deficits observed in several mental disorders including schizophrenia, Tourette's syndrome, and post-traumatic stress disorder (PTSD). Despite putative NE disturbances in these illnesses, NE regulation of PPI remains poorly understood. In these studies, regulation of PPI by the locus coeruleus (LC), the primary source of NE to forebrain, was evaluated in rats using well-established protocols to pharmacologically activate/inactivate this nucleus. The ability of drugs that treat deficient PPI in these illnesses to reverse LC-mediated PPI deficits was also tested. Stimulation of LC receptors produced an anatomically and behaviorally specific deficit in PPI that was blocked by clonidine (Cataprese, an α2 receptor agonist that reduces LC neuronal firing after peri-LC delivery), a postsynaptic α1 NE receptor antagonist (prazosin), and second-generation antipsychotics (olanzapine, seroquel), but not by drugs that antagonized dopamine-1 (SCH23390), dopamine-2 (the first-generation antipsychotic Haloperidol), or serotonin-2 receptors (ritanserin). These results indicate a novel substrate in the regulation of PPI and reveal a novel functional role for the LC. Hence, a hyperactive LC-NE system might underlie a deficient sensorimotor gating endophenotype in a subset of patients suffering from psychiatric illnesses including schizophrenia, Tourette's syndrome, and PTSD, and the ability to normalize LC-NE transmission could contribute to the clinical efficacy of certain drugs (Cataprese, prazosin, and second-generation antipsychotics) in these conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.