Abstract

Defective protein trafficking is a consequence of gene mutations. Human long-QT (LQT) syndrome results from mutations in several genes, including the human ether-a-go-go-related gene (HERG), which encodes a delayed rectifier K(+) current. Trafficking-defective mutant HERG protein is a mechanism for reduced delayed rectifier K(+) current in LQT2, and high-affinity HERG channel-blocking drugs can result in pharmacological rescue. Methods and Results- We postulated that drug molecules modified to remove high-affinity HERG block may still stabilize mutant proteins in a conformation required for rescue. We tested terfenadine carboxylate (fexofenadine) and terfenadine, structurally similar drugs with markedly different affinities for HERG block, for rescue of trafficking-defective LQT2 mutations. Terfenadine rescued the N470D mutation but blocked the channels. In contrast, fexofenadine rescued N470D with a half-maximal rescue concentration of 177 nmol/L, which is approximately 350-fold lower than the half-maximal channel block concentration. The G601S mutation was also rescued without channel block. Pharmacological rescue can occur without channel block. This could represent a new antiarrhythmic paradigm in the treatment of some trafficking-defective LQT2 mutations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.