Abstract

Mucopolysaccharidosis type VI (MPS VI) is a severe lysosomal storage disorder without central nervous system involvement caused by arylsulfatase B (ARSB) deficiency. MPS VI is characterized by dysostosis multiplex, corneal clouding, heart valve defects and urinary excretion of glycosaminoglycans (GAGs). The current treatment for MPS VI is enzyme replacement therapy (ERT) which has limited efficacy on bone, joints and heart valve disease, as well as high costs. A potential therapeutic approach for the subgroup of MPS VI patients that carry nonsense mutations is to enhance stop-codon read-through, using small molecules, to restore production of the full-length ARSB protein. In this study we investigated whether two compounds known to induce stop codon read-through, the aminoglycoside gentamicin and PTC124, can promote read-through of four different ARSB nonsense mutations (p.R315X, p.R327X, p.Q456X and p.Q503X) associated with MPS VI and enable the synthesis of full-length functional ARSB protein in patients fibroblast cell lines. Our study demonstrates that PTC124 but not gentamicin, increases the level of ARSB activity in three MPS VI patient fibroblast cell lines. In two of them the levels of ARSB activity obtained were significantly higher than in untreated cells, reaching ≤2.5 % of those detected in wild-type fibroblasts and resulting in significant reduction of lysosomal size. Since even small increases in enzyme activity can dramatically influence the clinical phenotype of MPS VI, our study suggests that pharmacological read-through may be combined with ERT potentially increasing therapeutic efficacy in those patients bearing nonsense ARSB mutations.Electronic supplementary materialThe online version of this article (doi:10.1007/s10545-012-9521-y) contains supplementary material, which is available to authorized users.

Highlights

  • Mucopolysaccharidosis VI (MPS VI; Maroteaux-Lamy syndrome; OMIM #253200) is an autosomal recessive lysosomal storage disorder (LSD), that belongs to the group of mucopolysaccharidoses (MPS)

  • A nonsense mutation prematurely halts the synthesis of a protein: stop codon read-through is being considered as a potential therapeutic strategy for recessive genetic diseases due to nonsense mutations

  • Our study is one of the first which tests the effect of PTC124 in LSD (Sarkar et al 2011), as only in one additional report it has been shown that aminoglycosides can suppress nonsense mutations within the iduronidase gene mutated in MPS I (Keeling et al 2001; Wang et al 2012)

Read more

Summary

Introduction

Mucopolysaccharidosis VI (MPS VI; Maroteaux-Lamy syndrome; OMIM #253200) is an autosomal recessive lysosomal storage disorder (LSD), that belongs to the group of mucopolysaccharidoses (MPS). The MPS are caused by defects in lysosomal enzymes that results in widespread intra- and extra-cellular accumulation of glycosaminoglycans (GAGs). MPS VI is caused by deficiency of the enzyme arylsulfatase B [ARSB] (N-acetylgalactosamine-4sulfatase; EC 3.1.6.12) which removes the C4 sulfate ester group from the N-acetylgalactosamine sugar residue at the nonreducing terminus of the glycosaminoglycans dermatan sulfate and chondroitin sulfate (Neufeld and Muenzer 2001). Deficiency of ARSB results in the intralysosomal storage and urinary excretion of these partially degraded GAGs. The ARSB gene encodes for a polypeptide precursor of 533 amino acids, with a molecular weight of 55.8 kDa that is. The protein is glycosylated (66 kDa) and processed into a mature form (57 kDa) (Litjens et al 1989)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call