Abstract
Under physiological conditions, nitric oxide (NO) is produced in the vasculature mainly by the endothelial NO synthase (eNOS). This endothelium-derived NO is a protective molecule with antihypertensive, antithrombotic and anti-atherosclerotic properties. Cardiovascular risk factors such as hypertension, hypercholesterolemia, cigarette smoking and diabetes mellitus induce oxidative stress mostly by stimulation of the NADPH oxidase. Overproduction of reactive oxygen species leads to oxidation of tetrahydrobiopterin (BH4), the essential cofactor of eNOS. In BH4 deficiency, oxygen reduction uncouples from NO synthesis, thereby converting eNOS to a superoxide- producing enzyme. Consequently, NO production is reduced and the pre-existing oxidative stress is enhanced, which contribute significantly to cardiovascular pathology. Therefore, pharmacological approaches that prevent eNOS uncoupling are of therapeutic interest. Among the drugs currently in clinical use, the renin inhibitor aliskiren, angiotensin-converting enzyme inhibitors, AT1 receptor blockers, the selective aldosterone antagonist eplerenone, statins, nebivolol and pentaerithrityl tetranitrate have been shown to have the potential to prevent or reverse eNOS uncoupling under experimental conditions. Resveratrol, BH4, sepiapterin, folic acid and AVE3085 have also been shown to recouple eNOS and improve endothelial function. The long-term benefit of these compounds, however, is still controversial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.