Abstract

Pharmacological preconditioning (PPC) with mitochondrial ATP-sensitive K(+) (mitoK(ATP) ) channel openers such as diazoxide, leads to cardioprotection against ischaemia. However, effects on Ca(2+) homeostasis during PPC, particularly changes in Ca(2+) channel activity, are poorly understood. We investigated the effects of PPC on cardiac L-type Ca(2+) channels. PPC was induced in isolated hearts and enzymatically dissociated cardiomyocytes from adult rats by preincubation with diazoxide. We measured reactive oxygen species (ROS) production and Ca(2+) signals associated with action potentials using fluorescent probes, and L-type currents using a whole-cell patch-clamp technique. Levels of the α(1c) subunit of L-type channels in the cellular membrane were measured by Western blot. PPC was accompanied by a 50% reduction in α(1c) subunit levels, and by a reversible fall in L-type current amplitude and Ca(2+) transients. These effects were prevented by the ROS scavenger N-acetyl-L-cysteine (NAC), or by the mitoK(ATP) channel blocker 5-hydroxydecanoate (5-HD). PPC significantly reduced infarct size, an effect blocked by NAC and 5-HD. Nifedipine also conferred protection against infarction when applied during the reperfusion period. Downregulation of the α(1c) subunit and Ca(2+) channel function were prevented in part by the protease inhibitor leupeptin. PPC downregulated the α(1c) subunit, possibly through ROS. Downregulation involved increased degradation of the Ca(2+) channel, which in turn reduced Ca(2+) influx, which may attenuate Ca(2+) overload during reperfusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call