Abstract

Mirogabalin, a novel ligand for the α2δ subunit of voltage-gated calcium channels, has been approved for the treatment of peripheral neuropathic pain including painful diabetic peripheral neuropathy (DPNP) and postherpetic neuralgia (PHN) in Japan. Mirogabalin showed potent and selective binding affinities for the α2δ subunits, and slower dissociation rates for the α2δ-1 subunit than for the α2δ-2 subunit. It also showed potent and long-lasting analgesic effects in rat models of neuropathic pain, and wider safety margins for the central nervous system side effects. A pharmacological study using mutant mice demonstrated that the analgesic effects of mirogabalin were mediated by binding of the drug to the α2δ-1 subunit, not the α2δ-2 subunit. The pharmacological properties of mirogabalin can be associated with its unique binding characteristics. The bioavailability of mirogabalin is high and its plasma exposure increases dose-proportionally. Mirogabalin is mainly excreted via the kidneys in an unchanged form, thus, mirogabalin has a low possibility of undergoing drug-drug interaction, while dose adjustment based on the creatinine clearance level is specified in patients with renal impairment. In double-blind, placebo-controlled phase 3 studies in Asian patients with DPNP and PHN, mirogabalin showed significant and dose-dependent pain relief, and all tested doses of mirogabalin were well tolerated. In summary, mirogabalin has a balanced efficacy versus safety profile, and can provide an alternative therapeutic option for the treatment of peripheral neuropathic pain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call