Abstract

Prostate cancer (PCa) is the most common malignancy in men of middle and older age. The standard treatment strategy for PCa ranges from active surveillance in low-grade, localized PCa to radical prostatectomy, external beam radiation therapy, hormonal treatment and chemotherapy. Recently, the use of prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) for metastatic castration-resistant PCa has been approved. PSMA is predominantly, but not exclusively, expressed on PCa cells. Because of its high expression in PCa, PSMA is a promising target for diagnostics and therapy. To understand the currently used RLT, knowledge about pharmacokinetics (PK) and pharmacodynamics (PD) of the PSMA ligand and the PSMA protein itself is crucial. PK and PD properties of the ligand and its target determine the duration and extent of the effect. Knowledge on the concentration-time profile, the target affinity and target abundance may help to predict the effect of RLT. Increased specific binding of radioligands to PSMA on PCa cells may be associated with better treatment response, where nonspecific binding may increase the risk of toxicity in healthy organs. Optimization of the radioligand, as well as synergistic effects of concomitant agents and an improved dosing strategy, may lead to more individualized treatment and better overall survival.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.