Abstract

The object of the study was to determine the pharmacological nature of pinacolyl methylphosphonofluoridate (soman)-induced hypothermia in mice. This was accomplished by examining the soman hypothermia dose response and the effect of various pharmacological antagonists in comparison to the hypothermia responses of muscarinic and nicotinic cholinergic agonists such as oxotremorine and nicotine and another anticholinesterase, physostigmine. Core temperature in mice was monitored by telemetry. In general, atropine antagonized oxotremorrine, physostigmine, and soman hypothermia but not nicotine hypothermia whereas mecamylamine antagonized nicotine hypothermia but not that produced by the other agonists. Soman hypothermia was not affected significantly by various pharmacological antagonists, suggesting that other neurotransmitters were not involved in the expression of soman hypothermia. Soman hypothermia appears to be due to muscarinic receptor stimulation and can be effectively antagonized, but not completely, by the use of atropine. Acetylcholinesterase oxime reactivators, such as HI-6 and toxogonin, were ineffective in antagonizing soman-induced hypothermia and reactivating hypothalamic acetylcholinesterase, whereas HI-6 was effective in reactivating soman-inhibited diaphragm acetylcholinesterase when administered up to 10 min after soman, indicating that aging of the soman-inhibited acetylcholinesterase had not occurred. Soman hypothermia appears to be primarily a muscarinic receptor-related event.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.