Abstract
Traumatic brain injury (TBI) remains a major public health concern worldwide with unmet effective treatment. Stimulator of interferon genes (STING) and its downstream type-I interferon (IFN) signalling are now appreciated to be involved in TBI pathogenesis. Compelling evidence have shown that STING and type-I IFNs are key in mediating the detrimental neuroinflammatory response after TBI. Therefore, pharmacological inhibition of STING presents a viable therapeutic opportunity in combating the detrimental neuroinflammatory response after TBI. This study investigated the neuroprotective effects of the small-molecule STING inhibitor n-(4-iodophenyl)-5-nitrofuran-2-carboxamide (C-176) in the controlled cortical impact mouse model of TBI in 10- to 12-week-old male mice. Thirty minutes post-controlled cortical impact surgery, a single 750-nmol dose of C-176 or saline (vehicle) was administered intravenously. Analysis was conducted 2h and 24 h post-TBI. Mice administered C-176 had significantly smaller cortical lesion area when compared to vehicle-treated mice 24 h post-TBI. Quantitative temporal gait analysis conducted using DigiGait™ showed C-176 administration attenuated TBI-induced impairments in gait symmetry, stride frequency and forelimb stance width. C-176-treated mice displayed a significant reduction in striatal gene expression of pro-inflammatory cytokines Tnf-α, Il-1β and Cxcl10 compared to their vehicle-treated counterparts 2h post-TBI. This study demonstrates the neuroprotective activity of C-176 in ameliorating acute neuroinflammation and preventing white matter neurodegeneration post-TBI. This study highlights the therapeutic potential of small-molecule inhibitors targeting STING for the treatment of trauma-induced inflammation and neuroprotective potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.