Abstract

Abstract Objectives Brown adipose tissue (BAT), responsible for energy expenditure through nonshivering thermogenesis, has emerged as a novel target for obesity treatment and prevention. Soluble epoxide hydrolase (sEH), encoded by Ephx2 gene, is a cytosolic enzyme that converts epoxy fatty acids (EpFAs) that are produced by cytochrome P-450 enzymes from polyunsaturated fatty acids into less active diols. Pharmacological inhibitors of sEH, such as trans-4-{4-[3-(4-trifluoromethoxyphenyl)-ureido] cyclohexyloxy} benzoic acid (t-TUCB), have been shown to be beneficial for chronic diseases by inhibiting the degradation of EpFAs. We have previously shown that t-TUCB dose-dependently promotes brown adipogenesis in vitro. This study investigated the therapeutic effects of t-TUCB on BAT activation in diet-induced obese mice. Methods Male C57BL6/J mice were fed a high-fat diet (60% kcal from fat) for 8 weeks followed by random assignment into either the control or t-TUCB group (n = 10 per group) to receive either the vehicle control or t-TUCB (3 mg/kg/day) via osmotic minipump delivery at the subcutaneous area near the interscapular BAT for 6 weeks. Bodyweight and food intake, glucose and insulin tolerance tests, cold tolerance tests, and indirect calorimetry were measured before the mice were euthanized for further biochemical analysis. Results sEH inhibition by t-TUCB in the obese mice did not change body weight, fat pad weight, food intake, fasting blood glucose, glucose and insulin tolerance, or cold tolerance, but significantly decreased blood triglyceride levels and increased heat production during both day and night. Moreover, t-TUCB significantly increased protein expression of brown marker gene PGC-1alpha and lipid droplet-associated protein perilipin (PLIN), but not uncoupling protein 1 (UCP1), in the interscapular BAT of diet-induced obese mice. Conclusions Our results suggest that sEH pharmacological inhibition may be beneficial for BAT activation by increasing mitochondrial biogenesis and lipolysis in the BAT. Further studies using the sEH inhibitors and/or EpFA generating diets for obesity treatment and prevention are warranted. Funding Sources The work was supported by NIH 1R15DK114790–01A1 (to L.Z.), K99DK100736 and R00DK100736 (to A.B.), R15AT008733 (to S.W.), R35 ES030443 and P42ES004699 (to B.D.H).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.